Spherical harmonics: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
(added general formula)
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
The '''spherical harmonics''' <math>Y_l^m (\theta,\phi)</math> are the angular portion of the solution to [[Laplace's equation]] in spherical coordinates.
The '''spherical harmonics''' <math>Y_l^m (\theta,\phi)</math> are the angular portion of the solution to [[Laplace's equation]] in spherical coordinates.
They are given by
:<math>Y_l^m  (\theta,\phi) =
(-1)^m \sqrt{\frac{2n+1}{4\pi}\frac{(n-m)!}{(n+m)!}}
P^m_n(\cos\theta) e^{i m \phi},</math>
where <math> P^m_n </math> is the [[associated Legendre function]].
The first few spherical harmonics are given by:
The first few spherical harmonics are given by:


Line 10: Line 16:
:<math>Y_1^1 (\theta,\phi) = -\frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta e^{i\phi} </math>
:<math>Y_1^1 (\theta,\phi) = -\frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta e^{i\phi} </math>
==See also==
==See also==
*[[Wigner D-matrix]]
*[http://mathworld.wolfram.com/SphericalHarmonic.html Spherical Harmonic -- from Wolfram MathWorld]
*[http://mathworld.wolfram.com/SphericalHarmonic.html Spherical Harmonic -- from Wolfram MathWorld]
==References==
*M. E. Rose "Elementary theory of angular momentum", John Wiley & Sons (1967) Appendix III
*[http://dx.doi.org/10.1007/BF01597437 I. Nezbeda, J. Kolafa and S. Labík "The spherical harmonic expansion coefficients and multidimensional integrals in theories of liquids", Czechoslovak Journal of Physics '''39''' pp.  65-79 (1989)]
*[http://dx.doi.org/10.1007/BF01597437 I. Nezbeda, J. Kolafa and S. Labík "The spherical harmonic expansion coefficients and multidimensional integrals in theories of liquids", Czechoslovak Journal of Physics '''39''' pp.  65-79 (1989)]
[[category: mathematics]]
[[category: mathematics]]

Latest revision as of 11:54, 20 June 2008

The spherical harmonics are the angular portion of the solution to Laplace's equation in spherical coordinates. They are given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_l^m (\theta,\phi) = (-1)^m \sqrt{\frac{2n+1}{4\pi}\frac{(n-m)!}{(n+m)!}} P^m_n(\cos\theta) e^{i m \phi},}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P^m_n } is the associated Legendre function.

The first few spherical harmonics are given by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_0^0 (\theta,\phi) = \frac{1}{2} \frac{1}{\sqrt{\pi}}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1^{-1} (\theta,\phi) = \frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta e^{-i\phi} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1^1 (\theta,\phi) = -\frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta e^{i\phi} }

See also[edit]

References[edit]