Computational implementation of integral equations: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
mNo edit summary
 
(14 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Integral equations are solved numerically.
Integral equations are solved numerically.
One has the [[Ornstein-Zernike relation]], <math>\gamma (12)</math>
One has the [[Ornstein-Zernike relation]], <math>\gamma (12)</math>
and a closure relation, <math>c_2 (12)</math> (which
and a [[closure relations | closure relation]], <math>c_2 (12)</math> (which
incorporates the [[bridge function]] <math>B(12)</math>).
incorporates the [[bridge function]] <math>B(12)</math>).
The numerical solution is iterative;  
The numerical solution is iterative;  
Line 19: Line 19:
Picard iteration generates a solution of an initial value problem for an ordinary differential equation (ODE) using fixed-point iteration.
Picard iteration generates a solution of an initial value problem for an ordinary differential equation (ODE) using fixed-point iteration.
Here are the four steps used to solve integral equations:
Here are the four steps used to solve integral equations:
===1. Closure relation <math>\gamma_{mns}^{\mu \nu} (r) \rightarrow c_{mns}^{\mu \nu} (r)</math>===
===Closure relation <math>\gamma_{mns}^{\mu \nu} (r) \rightarrow c_{mns}^{\mu \nu} (r)</math>===
(Note: for linear fluids <math>\mu = \nu =0</math>)
(Note: for linear fluids <math>\mu = \nu =0</math>)


Line 42: Line 42:


Thus  
Thus  
:<math>\gamma(12)=\gamma (r,x_1x_2,y,z_1z_2)</math>.
:<math>\left. \gamma(12) \right. =\gamma (r,x_1x_2,y,z_1z_2)</math>.


====Evaluate====
====Evaluate====
Evaluations of  <math>\gamma (12)</math> are performed at the discrete points <math>x_{i_1}x_{i_2},y_j,z_{k_1}z_{k_2}</math>
Evaluations of  <math>\gamma (12)</math> are performed at the discrete points <math>x_{i_1}x_{i_2},y_j,z_{k_1}z_{k_2}</math>
where the <math>x_i</math> are the <math>\nu</math> roots of the [[Legendre polynomial]] <math>P_\nu(cos \theta)</math>
where the <math>x_i</math> are the <math>\nu</math> roots of the [[Legendre polynomials |Legendre polynomial]] <math>P_\nu(cos \theta)</math>
where <math>y_j</math> are the  <math>\nu</math> roots of the [[Chebyshev polynomial]] <math>T_{\nu}(\ cos \phi)</math>
where <math>y_j</math> are the  <math>\nu</math> roots of the [[Chebyshev polynomials |Chebyshev polynomial]] <math>T_{\nu}(\ cos \phi)</math>
and where <math>z_{1_k},z_{2_k}</math>  are the  <math>\nu</math> roots of the [[Chebyshev polynomial]]
and where <math>z_{1_k},z_{2_k}</math>  are the  <math>\nu</math> roots of the Chebyshev polynomial
<math>T_{\nu}(\ cos \chi)</math>
<math>T_{\nu}(\ cos \chi)</math>
thus
thus
Line 59: Line 59:


where
where


:<math>\hat{d}_{s \mu}^m (x) = (2m+1)^{1/2} d_{s \mu}^m(\theta)</math>
:<math>\hat{d}_{s \mu}^m (x) = (2m+1)^{1/2} d_{s \mu}^m(\theta)</math>


where <math>d_{s \mu}^m(\theta)</math> is the angular, <math>\theta</math>, part of the
where <math>d_{s \mu}^m(\theta)</math> is the angular, <math>\theta</math>, part of the
Line 66: Line 68:
and
and


:<math>e_s(y)=\exp(is\phi)</math>
:<math>\left. e_s(y) \right.=\exp(is\phi)</math>


 
:<math>\left. e_{\mu}(z) \right.= \exp(i\mu \chi)</math>
:<math>e_{\mu}(z)= \exp(i\mu \chi)</math>


For the limits in the summations
For the limits in the summations


:<math>L_1= \max (s,\nu_1)</math>
:<math>\left. L_1 \right.= \max (s,\nu_1)</math>


:<math>L_2= \max (s,\nu_2)</math>
:<math>\left. L_2 \right.= \max (s,\nu_2)</math>


The above equation constitutes a separable five-dimensional transform. To rapidly evaluate
The above equation constitutes a separable five-dimensional transform. To rapidly evaluate
Line 98: Line 99:


Use [[Gauss-Legendre quadrature]] for <math>x_1</math> and <math>x_2</math>
Use [[Gauss-Legendre quadrature]] for <math>x_1</math> and <math>x_2</math>
Use [[Gauss-Chebyshev  quadrature]] for <math>y</math>, <math>z_1</math> and <math>z_2</math>
Use [[Gauss-Chebyshev  quadrature]] for <math>y</math>, <math>z_1</math> and <math>z_2</math>.
thus
Thus


:<math>c_{mns}^{\mu \nu} (r) = w^3  
:<math>c_{mns}^{\mu \nu} (r) = w^3  
Line 115: Line 116:
:<math>w=\frac{1}{NG}</math>
:<math>w=\frac{1}{NG}</math>


===Perform FFT from Real to Fourier space<math>c_{mns}^{\mu \nu} (r) \rightarrow  \tilde{c}_{mns}^{\mu \nu} (k)</math>====
===Perform FFT from Real to Fourier space <math>c_{mns}^{\mu \nu} (r) \rightarrow  \tilde{c}_{mns}^{\mu \nu} (k)</math>===


This is non-trivial and is undertaken in three steps:
This is non-trivial and is undertaken in three steps:
#Conversion from axial reference frame to spatial reference frame, ''i.e.''
 
====Conversion from axial reference frame to spatial reference frame====


:<math>c_{mns}^{\mu \nu} (r)  \rightarrow  c_{\mu \nu}^{mnl} (r)</math>
:<math>c_{mns}^{\mu \nu} (r)  \rightarrow  c_{\mu \nu}^{mnl} (r)</math>


this is done using the Blum transformation \cite{JCP_1972_56_00303,JCP_1972_57_01862,JCP_1973_58_03295}:
this is done using the Blum transformation (Refs 7, 8 and 9):


:<math>g_{\mu \nu}^{mnl}(r) = \sum_{s=-\min (m,n)}^{\min (m,n)} \left(  
:<math>g_{\mu \nu}^{mnl}(r) = \sum_{s=-\min (m,n)}^{\min (m,n)} \left(  
Line 131: Line 133:
\right)g_{mns}^{\mu \nu} (r)</math>
\right)g_{mns}^{\mu \nu} (r)</math>


#'''Fourier-Bessel Transforms''': <math>c_{\mu \nu}^{mnl} (r) \rightarrow \tilde{c}_{\mu \nu}^{mnl} (k)</math>
====Fourier-Bessel Transforms====
:<math>c_{\mu \nu}^{mnl} (r) \rightarrow \tilde{c}_{\mu \nu}^{mnl} (k)</math>


:<math>\tilde{c}_{\mu \nu}^{mnl} (k; l_1 l_2 l n_1 n_2) = 4\pi i^l \int_0^{\infty}  c_{\mu \nu}^{mnl} (r; l_1 l_2 l n_1 n_2) J_l (kr) ~r^2 {\rm d}r</math>
:<math>\tilde{c}_{\mu \nu}^{mnl} (k; l_1 l_2 l n_1 n_2) = 4\pi i^l \int_0^{\infty}  c_{\mu \nu}^{mnl} (r; l_1 l_2 l n_1 n_2) J_l (kr) ~r^2 {\rm d}r</math>


(see Blum and Torruella Eq. 5.6 \cite{JCP_1972_56_00303} or Lado Eq. 39 \cite{MP_1982_47_0283}),
(see Blum and Torruella Eq. 5.6 in Ref. 7 or Lado Eq. 39 in Ref. 3),
where <math>J_l(x)</math> is a [[Bessel function]] of order <math>l</math>.
where <math>J_l(x)</math> is a [[Bessel functions |Bessel function]] of order <math>l</math>.
`step-down' operations can be performed by way of sin and cos operations
`step-down' operations can be performed by way of sin and cos operations
of Fourier transforms, see Eqs. 49a, 49b, 50 of Lado  \cite{MP_1982_47_0283}.
of Fourier transforms, see Eqs. 49a, 49b, 50 of Lado  Ref. 3.
The  Fourier-Bessel transform is also known as a '''Hankel transform'''.
The  Fourier-Bessel transform is also known as a '''Hankel transform'''.
It is equivalent to a two-dimensional Fourier transform with a radially symmetric integral kernel.
It is equivalent to a two-dimensional Fourier transform with a radially symmetric integral kernel.


<math>g(q)=2\pi \int_0^\infty f(r) J_0(2 \pi qr)r ~{\rm d}r</math>
:<math>g(q)=2\pi \int_0^\infty f(r) J_0(2 \pi qr)r ~{\rm d}r</math>




<math>f(r)=2\pi \int_0^\infty g(q) J_0(2 \pi qr)q ~{\rm d}q</math>
:<math>f(r)=2\pi \int_0^\infty g(q) J_0(2 \pi qr)q ~{\rm d}q</math>


 
====Conversion from the spatial reference frame back to the  axial reference frame====
#Conversion from the spatial reference frame back to the  axial reference frame
:<math>\tilde{c}_{\mu \nu}^{mnl} (k)  \rightarrow  \tilde{c}_{mns}^{\mu \nu} (k) </math>
''i.e.''
 
<math>\tilde{c}_{\mu \nu}^{mnl} (k)  \rightarrow  \tilde{c}_{mns}^{\mu \nu} (k)  
</math>
this is done using the Blum transformation
this is done using the Blum transformation


<math>g_{mns}^{\mu \nu} (r)
:<math>g_{mns}^{\mu \nu} (r)
= \sum_{l=|m-n|}^{m+n} \left(  
= \sum_{l=|m-n|}^{m+n} \left(  
\begin{array}{ccc}
\begin{array}{ccc}
Line 164: Line 163:
g_{\mu \nu}^{mnl}(r)</math>  
g_{\mu \nu}^{mnl}(r)</math>  


OZ Equation} $  \tilde{c}_{mns}^{\mu \nu} (k)  \rightarrow  \tilde{\gamma}_{mns}^{\mu \nu} (k)$\\
===Ornstein-Zernike relation <math>\tilde{c}_{mns}^{\mu \nu} (k)  \rightarrow  \tilde{\gamma}_{mns}^{\mu \nu} (k)</math>===
~\\
 
For simple fluids:  
For simple fluids:  
\begin{equation}
 
\tilde{\gamma}(k)= \frac{\rho \tilde{c}_2 (k)^2}{1- \rho  \tilde{c}_2 (k)}
:<math>\tilde{\gamma}(k)= \frac{\rho \tilde{c}_2 (k)^2}{1- \rho  \tilde{c}_2 (k)}</math>
\end{equation}
 
For molecular fluids (see Eq. 19 of Lado \cite{MP_1982_47_0283})
For molecular fluids (see Eq. 19 of Lado Ref. 3)
%(see derivation in the thesis of Juan Antonio Anta pp. 105--107):
 
%\begin{equation}
:<math>\tilde{{\mathbf S}}_{m}(k) = (-1)^{m}\rho \left[{\mathbf I} - (-1)^{m} \rho \tilde{\mathbf C}_{m}(k) \right]^{-1} \tilde{\mathbf C}_{m}(k)\tilde{\mathbf C}_{m}(k)</math>
%\tilde{\Gamma}_{\chi}(k) = (-1)^{\chi}\rho \left[{\bf I} - (-1)^{\chi} \rho \tilde{\bf C}_{\chi}(k) \right]^{-1} \tilde{\bf C}_{\chi}(k)\tilde{\bf C}_{\chi}(k)
 
%\end{equation}
where <math>\tilde{{\mathbf S}}_{m}(k)</math> and <math>\tilde{\mathbf C}_{m}(k)</math> are matrices
\begin{equation}
with elements <math>\tilde S_{l_1 l_2 m}(k), \tilde{C}_{l_1 l_2 m}(k), l_1,l_2 \geq m</math>.
\tilde{{\bf S}}_{m}(k) = (-1)^{m}\rho \left[{\bf I} - (-1)^{m} \rho \tilde{\bf C}_{m}(k) \right]^{-1} \tilde{\bf C}_{m}(k)\tilde{\bf C}_{m}(k)
 
\end{equation}
For mixtures of simple fluids  (see Ref. 10 Juan Antonio Anta PhD thesis pp. 107--109):
where $\tilde{{\bf S}}_{m}(k)$ and $\tilde{\bf C}_{m}(k)$ are matrices
 
with elements $\tilde{S}_{l_1 l_2 m}(k), \tilde{C}_{l_1 l_2 m}(k), l_1,l_2 \geq m$.\\
:<math>\tilde{\Gamma}(k) =  {\mathbf D}  \left[{\mathbf I} -  {\mathbf D}  \tilde{\mathbf C}(k)\right]^{-1} \tilde{\mathbf C}(k)\tilde{\mathbf C}(k)</math>
For mixtures of simple fluids  (see \cite{JCP_1988_88_07715} and the thesis of Juan Antonio Anta pp. 107--109):
 
\begin{equation}
===Conversion back from Fourier space to Real space===
\tilde{\Gamma}(k) =  {\bf D}  \left[{\bf I} -  {\bf D}  \tilde{\bf C}(k)\right]^{-1} \tilde{\bf C}(k)\tilde{\bf C}(k)
:<math>\tilde{\gamma}_{mns}^{\mu \nu} (k)  \rightarrow \gamma_{mns}^{\mu \nu} (r)</math>
\end{equation}
(basically the inverse of step 2).
~\\
====Axial reference frame to spatial reference frame====
4) {\bf Conversion back from Fourier space to Real space}:
:<math>\tilde{\gamma}_{mns}^{\mu \nu} (k) \rightarrow  \tilde{\gamma}^{mnl}_{\mu \nu} (k)</math>
$ \tilde{\gamma}_{mns}^{\mu \nu} (k)  \rightarrow \gamma_{mns}^{\mu \nu} (r) $\\
====Inverse Fourier-Bessel transform====
(basically the inverse of step 2).\\
:<math>\tilde{\gamma}^{mnl}_{\mu \nu} (k) \rightarrow  \gamma^{mnl}_{\mu \nu} (r)</math>
i) axial reference frame to spatial reference frame: $ \tilde{\gamma}_{mns}^{\mu \nu} (k) \rightarrow  \tilde{\gamma}^{mnl}_{\mu \nu} (k)$\\
'Step-up' operations are given by Eq. 53 of Ref. 3. The inverse Hankel transform is
ii) Inverse Fourier-Bessel transform: $ \tilde{\gamma}^{mnl}_{\mu \nu} (k) \rightarrow  \gamma^{mnl}_{\mu \nu} (r)$\\
:<math>\gamma(r;l_1 l_2 l n_1 n_2)= \frac{1}{2 \pi^2 i^l} \int_0^\infty  \tilde{\gamma}(k;l_1 l_2 l n_1 n_2) J_l (kr) ~k^2 {\rm d}k</math>
`Step-up' operations are given by Eq. 53 of \cite{MP_1982_47_0283}.\\
====Change from  spatial reference frame back to  axial reference frame====
The inverse Hankel transform is
:<math>\gamma^{mnl}_{\mu \nu} (r) \rightarrow  \gamma_{mns}^{\mu \nu} (r)</math>.
\begin{equation}
\gamma(r;l_1 l_2 l n_1 n_2)= \frac{1}{2 \pi^2 i^l} \int_0^\infty  \tilde{\gamma}(k;l_1 l_2 l n_1 n_2) J_l (kr) ~k^2 {\rm d}k
\end{equation}
iii) Change from  spatial reference frame back to  axial reference frame:\gamma^{mnl}_{\mu \nu} (r) \rightarrow  \gamma_{mns}^{\mu \nu} (r)$.


==Ng acceleration==
==Ng acceleration==
*[http://dx.doi.org/10.1063/1.1682399  Kin-Chue Ng "Hypernetted chain solutions for the classical one-component plasma up to Gamma=7000", Journal of Chemical Physics '''61''' pp. 2680-2689  (1974)]
*[http://dx.doi.org/10.1063/1.1682399  Kin-Chue Ng "Hypernetted chain solutions for the classical one-component plasma up to Gamma=7000", Journal of Chemical Physics '''61''' pp. 2680-2689  (1974)]
\section{Angular momentum coupling coefficients}
==Angular momentum coupling coefficients==
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*[http://dx.doi.org/10.1016/0010-4655(70)90034-2  Taro Tamura  "Angular momentum coupling coefficients", Computer Physics Communications  '''1''' pp.  337-342 (1970)]
\cite{CPC_1970_1_0337,CPC_1971_2_0381}
*[http://dx.doi.org/10.1016/0010-4655(71)90030-0 J. G. Wills  "On the evaluation of angular momentum coupling coefficients", omputer Physics Communications  '''2''' pp. 381-382 (1971)]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Clebsch-Gordon coefficients and Racah's formula}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The Clebsch-Gordon coefficients are defined by
\begin{equation}
\Psi_{JM}= \sum_{M=M_1 + M_2} C_{M_1 M_2}^J \Psi_{M_1 M_2},
\end{equation}
where $J \equiv J_1 + J_2$ and satisfies
\begin{equation}
(j_1j_2m_1m_2|j_1j_2m)=0
\end{equation}
for $m_1+m_2\neq m$.\\
They are used to integrate products of three spherical harmonics (for example the addition of
angular momenta).\\
The Clebsch-Gordan coefficients are sometimes expressed using the related Racah V-coefficients (Giulio Racah (1909 - 1965)),
\begin{equation}
V(j_1j_2j;m_1m_2m)
\end{equation}
(See also the Racah W-coefficients, sometimes simply called the Racah coefficients).
\cite{CPC_1974_8_0095}
 
==References==
==References==
#[http://dx.doi.org/10.1080/00268977900102861 M. J. Gillan "A new method of solving the liquid structure integral equations" Molecular Physics '''38''' pp. 1781-1794 (1979)]
#[http://dx.doi.org/10.1080/00268977900102861 M. J. Gillan "A new method of solving the liquid structure integral equations" Molecular Physics '''38''' pp. 1781-1794 (1979)]
Line 231: Line 204:
#[http://dx.doi.org/10.1080/00268978200100222 F. Lado "Integral equations for fluids of linear molecules III. Orientational ordering", Molecular Physics '''47''' pp. 313-317 (1982)]
#[http://dx.doi.org/10.1080/00268978200100222 F. Lado "Integral equations for fluids of linear molecules III. Orientational ordering", Molecular Physics '''47''' pp. 313-317 (1982)]
#[http://dx.doi.org/10.1080/00268978900101981 Enrique Lomba "An efficient procedure for solving the reference hypernetted chain equation (RHNC) for simple fluids" Molecular Physics '''68''' pp. 87-95 (1989)]
#[http://dx.doi.org/10.1080/00268978900101981 Enrique Lomba "An efficient procedure for solving the reference hypernetted chain equation (RHNC) for simple fluids" Molecular Physics '''68''' pp. 87-95 (1989)]
#[http://dx.doi.org/10.1063/1.1676864 L. Blum and A. J. Torruella "Invariant Expansion for Two-Body Correlations: Thermodynamic Functions, Scattering, and the Ornstein—Zernike Equation", Journal of Chemical Physics '''56''' pp. pp. 303-310  (1972)]
#[http://dx.doi.org/10.1063/1.1678503 L. Blum "Invariant Expansion. II. The Ornstein-Zernike Equation for Nonspherical Molecules and an Extended Solution to the Mean Spherical Model", Journal of Chemical Physics '''57''' pp. 1862-1869 (1972)]
#[http://dx.doi.org/10.1063/1.1679655 L. Blum "Invariant expansion III: The general solution of the mean spherical model for neutral spheres with electostatic interactions", Journal of Chemical Physics '''58''' pp. 3295-3303 (1973)]
#[http://dx.doi.org/10.1063/1.454286    P. G. Kusalik and G. N. Patey " On the molecular theory of aqueous electrolyte solutions. I. The solution of the RHNC approximation for models at finite concentration",  Journal of Chemical Physics '''88''' pp. 7715-7738 (1988)]
[[category: integral equations]]

Latest revision as of 15:57, 31 January 2008

Integral equations are solved numerically. One has the Ornstein-Zernike relation, and a closure relation, (which incorporates the bridge function ). The numerical solution is iterative;

  1. trial solution for
  2. calculate
  3. use the Ornstein-Zernike relation to generate a new etc.

Note that the value of is local, i.e. the value of at a given point is given by the value of at this point. However, the Ornstein-Zernike relation is non-local. The way to convert the Ornstein-Zernike relation into a local equation is to perform a (fast) Fourier transform (FFT). Note: convergence is poor for liquid densities. (See Ref.s 1 to 6).

Picard iteration[edit]

Picard iteration generates a solution of an initial value problem for an ordinary differential equation (ODE) using fixed-point iteration. Here are the four steps used to solve integral equations:

Closure relation [edit]

(Note: for linear fluids )

Perform the summation[edit]

where is the separation between molecular centers and the sets of Euler angles needed to specify the orientations of the two molecules, with

with .

Define the variables[edit]

Thus

.

Evaluate[edit]

Evaluations of are performed at the discrete points where the are the roots of the Legendre polynomial where are the roots of the Chebyshev polynomial and where are the roots of the Chebyshev polynomial thus

where



where is the angular, , part of the rotation matrix , and

For the limits in the summations

The above equation constitutes a separable five-dimensional transform. To rapidly evaluate this expression it is broken down into five one-dimensional transforms:

Operations involving the and basis functions are performed in complex arithmetic. The sum of these operations is asymptotically smaller than the previous expression and thus constitutes a ``fast separable transform". and are parameters; is the number of nodes in the Gauss integration, and the the max index in the truncated rotational invariants expansion.

Integrate over angles [edit]

Use Gauss-Legendre quadrature for and Use Gauss-Chebyshev quadrature for , and . Thus

where the Gauss-Legendre quadrature weights are given by

while the Gauss-Chebyshev quadrature has the constant weight

Perform FFT from Real to Fourier space [edit]

This is non-trivial and is undertaken in three steps:

Conversion from axial reference frame to spatial reference frame[edit]

this is done using the Blum transformation (Refs 7, 8 and 9):

Fourier-Bessel Transforms[edit]

(see Blum and Torruella Eq. 5.6 in Ref. 7 or Lado Eq. 39 in Ref. 3), where is a Bessel function of order . `step-down' operations can be performed by way of sin and cos operations of Fourier transforms, see Eqs. 49a, 49b, 50 of Lado Ref. 3. The Fourier-Bessel transform is also known as a Hankel transform. It is equivalent to a two-dimensional Fourier transform with a radially symmetric integral kernel.


Conversion from the spatial reference frame back to the axial reference frame[edit]

this is done using the Blum transformation

Ornstein-Zernike relation [edit]

For simple fluids:

For molecular fluids (see Eq. 19 of Lado Ref. 3)

where and are matrices with elements .

For mixtures of simple fluids (see Ref. 10 Juan Antonio Anta PhD thesis pp. 107--109):

Conversion back from Fourier space to Real space[edit]

(basically the inverse of step 2).

Axial reference frame to spatial reference frame[edit]

Inverse Fourier-Bessel transform[edit]

'Step-up' operations are given by Eq. 53 of Ref. 3. The inverse Hankel transform is

Change from spatial reference frame back to axial reference frame[edit]

.

Ng acceleration[edit]

Angular momentum coupling coefficients[edit]

References[edit]

  1. M. J. Gillan "A new method of solving the liquid structure integral equations" Molecular Physics 38 pp. 1781-1794 (1979)
  2. Stanislav Labík, Anatol Malijevský and Petr Voncaronka "A rapidly convergent method of solving the OZ equation", Molecular Physics 56 pp. 709-715 (1985)
  3. F. Lado "Integral equations for fluids of linear molecules I. General formulation", Molecular Physics 47 pp. 283-298 (1982)
  4. F. Lado "Integral equations for fluids of linear molecules II. Hard dumbell solutions", Molecular Physics 47 pp. 299-311 (1982)
  5. F. Lado "Integral equations for fluids of linear molecules III. Orientational ordering", Molecular Physics 47 pp. 313-317 (1982)
  6. Enrique Lomba "An efficient procedure for solving the reference hypernetted chain equation (RHNC) for simple fluids" Molecular Physics 68 pp. 87-95 (1989)
  7. L. Blum and A. J. Torruella "Invariant Expansion for Two-Body Correlations: Thermodynamic Functions, Scattering, and the Ornstein—Zernike Equation", Journal of Chemical Physics 56 pp. pp. 303-310 (1972)
  8. L. Blum "Invariant Expansion. II. The Ornstein-Zernike Equation for Nonspherical Molecules and an Extended Solution to the Mean Spherical Model", Journal of Chemical Physics 57 pp. 1862-1869 (1972)
  9. L. Blum "Invariant expansion III: The general solution of the mean spherical model for neutral spheres with electostatic interactions", Journal of Chemical Physics 58 pp. 3295-3303 (1973)
  10. P. G. Kusalik and G. N. Patey " On the molecular theory of aqueous electrolyte solutions. I. The solution of the RHNC approximation for models at finite concentration", Journal of Chemical Physics 88 pp. 7715-7738 (1988)