Laguerre polynomials: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(New page: Laguerre polynomials are solutions <math>L_n(x)</math> to the Laguerre differential equation with <math>\nu =0</math>. The Laguerre polynomial <math>H_n(z)</math> can be defined by the con...)
 
No edit summary
 
Line 6: Line 6:
The first four Laguerre polynomials are:
The first four Laguerre polynomials are:


<math>\left. L_0 (x) \right.=1</math>
:<math>\left. L_0 (x) \right.=1</math>




<math>\left. L_1 (x) \right.=-x +1</math>
:<math>\left. L_1 (x) \right.=-x +1</math>




<math>L_2 (x) =\frac{1}{2}(x^2 -4x +2)</math>
:<math>L_2 (x) =\frac{1}{2}(x^2 -4x +2)</math>




<math>L_3 (x) =\frac{1}{6}(-x^3 +9x^2 -18x +6)</math>
:<math>L_3 (x) =\frac{1}{6}(-x^3 +9x^2 -18x +6)</math>
 


===Generalized Laguerre function===
===Generalized Laguerre function===


<math>L_n^{\alpha}(x)= \frac{(\alpha + 1)_n}{n!} ~_1F_1(-n; \alpha + 1;x)</math>
:<math>L_n^{\alpha}(x)= \frac{(\alpha + 1)_n}{n!} ~_1F_1(-n; \alpha + 1;x)</math>


where <math>(a)_n</math> is the Pochhammer symbol
where <math>(a)_n</math> is the Pochhammer symbol

Latest revision as of 10:48, 31 May 2007

Laguerre polynomials are solutions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_n(x)} to the Laguerre differential equation with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu =0} . The Laguerre polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_n(z)} can be defined by the contour integral

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_n (z) = \frac{1}{2 \pi i} \oint \frac{e^{-zt/(1-t)}}{(1-t)t^{n+1}}{\rm d}t}

The first four Laguerre polynomials are:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. L_0 (x) \right.=1}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. L_1 (x) \right.=-x +1}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_2 (x) =\frac{1}{2}(x^2 -4x +2)}



Generalized Laguerre function[edit]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_n^{\alpha}(x)= \frac{(\alpha + 1)_n}{n!} ~_1F_1(-n; \alpha + 1;x)}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a)_n} is the Pochhammer symbol and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ~_1F_1(a;b;x)} is a confluent hyper-geometric function.

See also[edit]