Chemical potential: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) |
Carl McBride (talk | contribs) m (→References: Added a recent publication) |
||
(12 intermediate revisions by 5 users not shown) | |||
Line 6: | Line 6: | ||
where <math>G</math> is the [[Gibbs energy function]], leading to | where <math>G</math> is the [[Gibbs energy function]], leading to | ||
:<math>\mu=\frac{A}{ | :<math>\frac{\mu}{k_B T}=\frac{G}{N k_B T}=\frac{A}{N k_B T}+\frac{p V}{N k_B T}</math> | ||
where <math>A</math> is the [[Helmholtz energy function]], <math>k_B</math> | where <math>A</math> is the [[Helmholtz energy function]], <math>k_B</math> | ||
is the [[Boltzmann constant]], <math>p</math> is the pressure, <math>T</math> is the temperature | is the [[Boltzmann constant]], <math>p</math> is the [[pressure]], <math>T</math> is the [[temperature]] and <math>V</math> | ||
is the volume. | is the volume. | ||
Line 16: | Line 16: | ||
number of particles | number of particles | ||
:<math>\mu= \left. \frac{\partial A}{\partial N}\right\vert_{T,V}=\frac{\partial (-k_B T \ln Z_N)}{\partial N} = -\frac{3}{2} | :<math>\mu= \left. \frac{\partial A}{\partial N}\right\vert_{T,V}=\frac{\partial (-k_B T \ln Z_N)}{\partial N} = - k_B T \left[ \frac{3}{2} \ln \left(\frac{2\pi m k_BT}{h^2}\right) + \frac{\partial \ln Q_N}{\partial N} \right]</math> | ||
where <math>Z_N</math> is the [[partition function]] for a fluid of <math>N</math> | where <math>Z_N</math> is the [[partition function]] for a fluid of <math>N</math> | ||
identical particles | identical particles | ||
:<math>Z_N= \left( \frac{2\pi m k_BT}{h^2} \right)^{3N/2} Q_N</math> | :<math>Z_N= \left( \frac{2\pi m k_BT}{h^2} \right)^{3N/2} Q_N</math> | ||
and <math>Q_N</math> is the [ | and <math>Q_N</math> is the | ||
[http://clesm.mae.ufl.edu/wiki.pub/index.php/Configuration_integral_%28statistical_mechanics%29 configurational integral] | |||
:<math>Q_N = \frac{1}{N!} \int ... \int \exp (-U_N/k_B T) dr_1...dr_N</math> | :<math>Q_N = \frac{1}{N!} \int ... \int \exp (-U_N/k_B T) dr_1...dr_N</math> | ||
==Kirkwood charging formula== | ==Kirkwood charging formula== | ||
The Kirkwood charging formula is given by <ref>[http://dx.doi.org/10.1063/1.1749657 John G. Kirkwood "Statistical Mechanics of Fluid Mixtures", Journal of Chemical Physics '''3''' pp. 300-313 (1935)]</ref> | |||
:<math>\beta \mu_{\rm ex} = \rho \int_0^1 d\lambda \int \frac{\partial \beta \Phi_{12} (r,\lambda)}{\partial \lambda} {\rm g}(r,\lambda) dr</math> | :<math>\beta \mu_{\rm ex} = \rho \int_0^1 d\lambda \int \frac{\partial \beta \Phi_{12} (r,\lambda)}{\partial \lambda} {\rm g}(r,\lambda) dr</math> | ||
Line 29: | Line 32: | ||
where <math>\Phi_{12}(r)</math> is the [[intermolecular pair potential]] and <math>{\rm g}(r)</math> is the [[Pair distribution function | pair correlation function]]. | where <math>\Phi_{12}(r)</math> is the [[intermolecular pair potential]] and <math>{\rm g}(r)</math> is the [[Pair distribution function | pair correlation function]]. | ||
==See also== | ==See also== | ||
*[[Constant chemical potential molecular dynamics (CμMD)]] | |||
*[[Ideal gas: Chemical potential]] | *[[Ideal gas: Chemical potential]] | ||
*[[Overlapping distribution method]] | |||
*[[Widom test-particle method]] | |||
==References== | ==References== | ||
<references/> | |||
'''Related reading''' | |||
*[http://dx.doi.org/10.1119/1.17844 G. Cook and R. H. Dickerson "Understanding the chemical potential", American Journal of Physics '''63''' pp. 737-742 (1995)] | |||
*[http://dx.doi.org/10.1007/s10955-005-8067-x T. A. Kaplan "The Chemical Potential", Journal of Statistical Physics '''122''' pp. 1237-1260 (2006)] | |||
*[http://dx.doi.org/10.1063/1.4758757 Federico G. Pazzona, Pierfranco Demontis, and Giuseppe B. Suffritti "Chemical potential evaluation in NVT lattice-gas simulations", Journal of Chemical Physics '''137''' 154106 (2012)] | |||
*[http://dx.doi.org/10.1063/1.4991324 E. A. Ustinov "Efficient chemical potential evaluation with kinetic Monte Carlo method and non-uniform external potential: Lennard-Jones fluid, liquid, and solid", Journal of Chemical Physics '''147''' 014105 (2017)] | |||
*[https://doi.org/10.1063/1.5024631 Claudio Perego, Omar Valsson, and Michele Parrinello "Chemical potential calculations in non-homogeneous liquids", Journal of Chemical Physics 149, 072305 (2018)] | |||
[[category:classical thermodynamics]] | [[category:classical thermodynamics]] | ||
[[category:statistical mechanics]] | [[category:statistical mechanics]] |
Latest revision as of 13:07, 12 September 2018
Classical thermodynamics[edit]
Definition:
where is the Gibbs energy function, leading to
where is the Helmholtz energy function, is the Boltzmann constant, is the pressure, is the temperature and is the volume.
Statistical mechanics[edit]
The chemical potential is the derivative of the Helmholtz energy function with respect to the number of particles
where is the partition function for a fluid of identical particles
and is the configurational integral
Kirkwood charging formula[edit]
The Kirkwood charging formula is given by [1]
where is the intermolecular pair potential and is the pair correlation function.
See also[edit]
- Constant chemical potential molecular dynamics (CμMD)
- Ideal gas: Chemical potential
- Overlapping distribution method
- Widom test-particle method
References[edit]
Related reading
- G. Cook and R. H. Dickerson "Understanding the chemical potential", American Journal of Physics 63 pp. 737-742 (1995)
- T. A. Kaplan "The Chemical Potential", Journal of Statistical Physics 122 pp. 1237-1260 (2006)
- Federico G. Pazzona, Pierfranco Demontis, and Giuseppe B. Suffritti "Chemical potential evaluation in NVT lattice-gas simulations", Journal of Chemical Physics 137 154106 (2012)
- E. A. Ustinov "Efficient chemical potential evaluation with kinetic Monte Carlo method and non-uniform external potential: Lennard-Jones fluid, liquid, and solid", Journal of Chemical Physics 147 014105 (2017)
- Claudio Perego, Omar Valsson, and Michele Parrinello "Chemical potential calculations in non-homogeneous liquids", Journal of Chemical Physics 149, 072305 (2018)