Pressure: Difference between revisions
Carl McBride (talk | contribs) (→References: Added a recent publication) |
|||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
'''Pressure''' (<math>p</math>) is the force per unit area applied on a surface, in a direction perpendicular to that surface, i.e. the scalar part of the [[stress]] tensor under equilibrium/ | '''Pressure''' (<math>p</math>) is the force per unit area applied on a surface, in a direction perpendicular to that surface, i.e. the scalar part of the [[stress]] tensor under equilibrium/hydrostatic conditions. | ||
==Thermodynamics== | ==Thermodynamics== | ||
In thermodynamics the pressure is given by | In thermodynamics the pressure is given by | ||
Line 76: | Line 76: | ||
*[http://dx.doi.org/10.1063/1.4807305 J. P. Wittmer, H. Xu, P. Polińska, F. Weysser, and J. Baschnagel "Communication: Pressure fluctuations in isotropic solids and fluids", Journal of Chemical Physics '''138''' 191101 (2013)] | *[http://dx.doi.org/10.1063/1.4807305 J. P. Wittmer, H. Xu, P. Polińska, F. Weysser, and J. Baschnagel "Communication: Pressure fluctuations in isotropic solids and fluids", Journal of Chemical Physics '''138''' 191101 (2013)] | ||
*[http://dx.doi.org/10.1063/1.4900773 F. J. Martínez-Ruiz, F. J. Blas, B. Mendiboure and A. I. Moreno-Ventas Bravo "Effect of dispersive long-range corrections to the pressure tensor: The vapour-liquid interfacial properties of the Lennard-Jones system revisited", Journal of Chemical Physics '''141''' 184701 (2014)] | *[http://dx.doi.org/10.1063/1.4900773 F. J. Martínez-Ruiz, F. J. Blas, B. Mendiboure and A. I. Moreno-Ventas Bravo "Effect of dispersive long-range corrections to the pressure tensor: The vapour-liquid interfacial properties of the Lennard-Jones system revisited", Journal of Chemical Physics '''141''' 184701 (2014)] | ||
*[http://dx.doi.org/10.1063/1.4944620 Sadrul Chowdhury, Sneha Abraham, Toby Hudson and Peter Harrowell "Long range stress correlations in the inherent structures of liquids at rest", Journal of Chemical Physics '''144''' 124508 (2016)] | |||
*[http://dx.doi.org/10.1063/1.4948711 Ronald E. Miller, Ellad B. Tadmor, Joshua S. Gibson, Noam Bernstein and Fabio Pavia "Molecular dynamics at constant Cauchy stress", Journal of Chemical Physics '''144''' 184107 (2016)] | |||
*[http://dx.doi.org/10.1063/1.4984834 E. R. Smith, D. M. Heyes, and D. Dini "Towards the Irving-Kirkwood limit of the mechanical stress tensor", Journal of Chemical Physics '''146''' 224109 (2017)] | |||
*[https://doi.org/10.1063/1.5019424 Matthias Krüger, Alexandre Solon, Vincent Démery, Christian M. Rohwer, and David S. Dean "Stresses in non-equilibrium fluids: Exact formulation and coarse-grained theory", Journal of Chemical Physics '''148''' 084503 (2018)] | |||
Latest revision as of 12:22, 2 March 2018
Pressure () is the force per unit area applied on a surface, in a direction perpendicular to that surface, i.e. the scalar part of the stress tensor under equilibrium/hydrostatic conditions.
Thermodynamics[edit]
In thermodynamics the pressure is given by
where is the Helmholtz energy function, is the volume, is the Boltzmann constant, is the temperature and is the canonical ensemble partition function.
Units[edit]
The SI units for pressure are Pascals (Pa), 1 Pa being 1 N/m2, or 1 J/m3. Other frequently encountered units are bars and millibars (mbar); 1 mbar = 100 Pa = 1 hPa, 1 hectopascal. 1 bar is 105 Pa by definition. This is very close to the standard atmosphere (atm), approximately equal to typical air pressure at earth mean sea level: atm, standard atmosphere = 101325 Pa = 101.325 kPa = 1013.25 hPa = 1.01325 bar
Stress[edit]
The stress is given by
where is the force, is the area, and is the stress tensor, given by
where where , , and are normal stresses, and , , , , , and are shear stresess.
Virial pressure[edit]
The virial pressure is commonly used to obtain the pressure from a general simulation. It is particularly well suited to molecular dynamics, since forces are evaluated and readily available. For pair interactions, one has (Eq. 2 in [1]):
where is the pressure, is the temperature, is the volume and is the Boltzmann constant. In this equation one can recognize an ideal gas contribution, and a second term due to the virial. The overline is an average, which would be a time average in molecular dynamics, or an ensemble average in Monte Carlo; is the dimension of the system (3 in the "real" world). is the force on particle exerted by particle , and is the vector going from to : .
This relationship is readily obtained by writing the partition function in "reduced coordinates", i.e. , etc, then considering a "blow-up" of the system by changing the value of . This would apply to a simple cubic system, but the same ideas can also be applied to obtain expressions for the stress tensor and the surface tension, and are also used in constant-pressure Monte Carlo.
If the interaction is central, the force is given by
where the force corresponding to the intermolecular potential :
For example, for the Lennard-Jones potential, . Hence, the expression reduces to
Notice that most realistic potentials are attractive at long ranges; hence the first correction to the ideal pressure will be a negative contribution: the second virial coefficient. On the other hand, contributions from purely repulsive potentials, such as hard spheres, are always positive.
Pressure equation[edit]
For particles acting through two-body central forces alone one may use the thermodynamic relation
Using this relation, along with the Helmholtz energy function and the canonical partition function, one arrives at the so-called pressure equation (also known as the virial equation):
where , is a central potential and is the pair distribution function.
See also[edit]
References[edit]
Related reading
- Aidan P. Thompson, Steven J. Plimpton, and William Mattson "General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions", Journal of Chemical Physics 131 154107 (2009)
- G. C. Rossi and M. Testa "The stress tensor in thermodynamics and statistical mechanics", Journal of Chemical Physics 132 074902 (2010)
- Nikhil Chandra Admal and E. B. Tadmor "Stress and heat flux for arbitrary multibody potentials: A unified framework", Journal of Chemical Physics 134 184106 (2011)
- Takenobu Nakamura, Wataru Shinoda, and Tamio Ikeshoji "Novel numerical method for calculating the pressure tensor in spherical coordinates for molecular systems", Journal of Chemical Physics 135 094106 (2011)
- Péter T. Kiss and András Baranyai "On the pressure calculation for polarizable models in computer simulation", Journal of Chemical Physics 136 104109 (2012)
- Jerry Zhijian Yang, Xiaojie Wu, and Xiantao Li "A generalized Irving–Kirkwood formula for the calculation of stress in molecular dynamics models", Journal of Chemical Physics 137 134104 (2012)
- J. P. Wittmer, H. Xu, P. Polińska, F. Weysser, and J. Baschnagel "Communication: Pressure fluctuations in isotropic solids and fluids", Journal of Chemical Physics 138 191101 (2013)
- F. J. Martínez-Ruiz, F. J. Blas, B. Mendiboure and A. I. Moreno-Ventas Bravo "Effect of dispersive long-range corrections to the pressure tensor: The vapour-liquid interfacial properties of the Lennard-Jones system revisited", Journal of Chemical Physics 141 184701 (2014)
- Sadrul Chowdhury, Sneha Abraham, Toby Hudson and Peter Harrowell "Long range stress correlations in the inherent structures of liquids at rest", Journal of Chemical Physics 144 124508 (2016)
- Ronald E. Miller, Ellad B. Tadmor, Joshua S. Gibson, Noam Bernstein and Fabio Pavia "Molecular dynamics at constant Cauchy stress", Journal of Chemical Physics 144 184107 (2016)
- E. R. Smith, D. M. Heyes, and D. Dini "Towards the Irving-Kirkwood limit of the mechanical stress tensor", Journal of Chemical Physics 146 224109 (2017)
- Matthias Krüger, Alexandre Solon, Vincent Démery, Christian M. Rohwer, and David S. Dean "Stresses in non-equilibrium fluids: Exact formulation and coarse-grained theory", Journal of Chemical Physics 148 084503 (2018)