Combining rules: Difference between revisions
Carl McBride (talk | contribs) (tmp save) |
Carl McBride (talk | contribs) m (Reverted edits by 38.105.236.163 (talk) to last revision by Carl McBride) |
||
(24 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
The '''combining rules''' are geometric expressions designed to provide the interaction energy between two dissimilar non-bonded atoms (here labelled <math>i</math> and <math>j</math>). Most of the rules are designed to be used with a specific [[Idealised models| interaction potential]] in mind. (''See also'' [[Mixing rules]]). | |||
The '''combining rules''' | |||
==Böhm-Ahlrichs== | ==Böhm-Ahlrichs== | ||
<ref>[http://dx.doi.org/10.1063/1.444057 Hans‐Joachim Böhm and Reinhart Ahlrichs "A study of short‐range repulsions", Journal of Chemical Physics '''77''' pp. 2028- (1982)]</ref> | <ref>[http://dx.doi.org/10.1063/1.444057 Hans‐Joachim Böhm and Reinhart Ahlrichs "A study of short‐range repulsions", Journal of Chemical Physics '''77''' pp. 2028- (1982)]</ref> | ||
Line 21: | Line 16: | ||
==Hudson and McCoubrey== | ==Hudson and McCoubrey== | ||
<ref>[http://dx.doi.org/10.1039/TF9605600761 G. H. Hudson and J. C. McCoubrey "Intermolecular forces between unlike molecules. A more complete form of the combining rules", Transactions of the Faraday Society '''56''' pp. 761-766 (1960)]</ref> | <ref>[http://dx.doi.org/10.1039/TF9605600761 G. H. Hudson and J. C. McCoubrey "Intermolecular forces between unlike molecules. A more complete form of the combining rules", Transactions of the Faraday Society '''56''' pp. 761-766 (1960)]</ref> | ||
==Hogervorst rules== | |||
The Hogervorst rules for the [[Exp-6 potential]] <ref>[http://dx.doi.org/10.1016/0031-8914(71)90138-8 W. Hogervorst "Transport and equilibrium properties of simple gases and forces between like and unlike atoms", Physica '''51''' pp. 77-89 (1971)]</ref>: | |||
:<math>\epsilon_{12} = \frac{2 \epsilon_{11} \epsilon_{22}}{\epsilon_{11} + \epsilon_{22}}</math> | |||
and | |||
:<math>\alpha_{12}=\frac{1}{2} (\alpha_{11} + \alpha_{22})</math> | |||
==Kong rules== | ==Kong rules== | ||
<ref>[http://dx.doi.org/10.1063/1.1680358 Chang Lyoul Kong "Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12–6) potential and the Morse potential", Journal of Chemical Physics '''59''' pp. 2464-2467 (1973)]</ref> | The Kong rules for the [[Lennard-Jones model]] are given by (Table I in | ||
<ref>[http://dx.doi.org/10.1063/1.1680358 Chang Lyoul Kong "Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12–6) potential and the Morse potential", Journal of Chemical Physics '''59''' pp. 2464-2467 (1973)]</ref>): | |||
:<math>\epsilon_{ij}\sigma_{ij}^{6}=\left(\epsilon_{ii}\sigma_{ii}^{6}\epsilon_{jj}\sigma_{jj}^{6}\right)^{1/2}</math> | |||
:<math> \epsilon_{ij}\sigma_{ij}^{12} = | |||
\left[ | |||
\frac{ | |||
(\epsilon_{ii}\sigma_{ii}^{12})^{1/13} | |||
+ | |||
(\epsilon_{jj}\sigma_{jj}^{12})^{1/13} | |||
}{2} | |||
\right]^{13} | |||
</math> | |||
==Kong-Chakrabarty rules== | |||
The Kong-Chakrabarty rules for the [[Exp-6 potential]] <ref>[http://dx.doi.org/10.1021/j100640a019 Chang Lyoul Kong , Manoj R. Chakrabarty "Combining rules for intermolecular potential parameters. III. Application to the exp 6 potential", Journal of Physical Chemistry '''77''' pp. 2668-2670 (1973)]</ref> are given by (Eqs. 2-4): | |||
:<math>\left[ \frac{\epsilon_{12}\alpha_{12} e^{\alpha_{12}}}{(\alpha_{12}-6)\sigma_{12}} \right]^{2\sigma_{12}/\alpha_{12}}= | |||
\left[ \frac{\epsilon_{11}\alpha_{11} e^{\alpha_{11}}}{(\alpha_{11}-6)\sigma_{11}} \right]^{\sigma_{11}/\alpha_{11}} | |||
\left[ \frac{\epsilon_{22}\alpha_{22} e^{\alpha_{22}}}{(\alpha_{22}-6)\sigma_{22}} \right]^{\sigma_{22}/\alpha_{22}} | |||
</math> | |||
:<math>\frac{\sigma_{12}}{\alpha_{12}}= \frac{1}{2} \left( \frac{\sigma_{11}}{\alpha_{11}} + \frac{\sigma_{22}}{\alpha_{22}} \right)</math> | |||
and | |||
:<math>\frac{\epsilon_{12}\alpha_{12}\sigma_{12}^6}{(\alpha_{12}-6)} = \left[\frac{\epsilon_{11}\alpha_{11}\sigma_{11}^6}{(\alpha_{11}-6)} \frac{\epsilon_{22}\alpha_{22}\sigma_{22}^6}{(\alpha_{22}-6)} \right]^{\frac{1}{2}}</math> | |||
==Lorentz-Berthelot rules== | ==Lorentz-Berthelot rules== | ||
The Lorentz rule is given by <ref>[ | The Lorentz rule is given by <ref>[http://dx.doi.org/10.1002/andp.18812480110 H. A. Lorentz "Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase", Annalen der Physik '''12''' pp. 127-136 (1881)]</ref> | ||
:<math>\sigma_{ij} = \frac{\sigma_{ii} + \sigma_{jj}}{2}</math> | :<math>\sigma_{ij} = \frac{\sigma_{ii} + \sigma_{jj}}{2}</math> | ||
which is only really valid for the [[hard sphere model]]. | which is only really valid for the [[hard sphere model]]. | ||
The Berthelot rule is given by | The Berthelot rule is given by <ref>[http://visualiseur.bnf.fr/Document/CadresPage?O=NUMM-3082&I=1703 Daniel Berthelot "Sur le mélange des gaz", Comptes rendus hebdomadaires des séances de l’Académie des Sciences, '''126''' pp. 1703-1855 (1898)]</ref> | ||
:<math>\epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}</math> | :<math>\epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}</math> | ||
Line 35: | Line 66: | ||
These rules are simple and widely used, but are not without their failings <ref>[http://dx.doi.org/10.1080/00268970010020041 Jérôme Delhommelle; Philippe Millié "Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation", Molecular Physics '''99''' pp. 619-625 (2001)]</ref> | These rules are simple and widely used, but are not without their failings <ref>[http://dx.doi.org/10.1080/00268970010020041 Jérôme Delhommelle; Philippe Millié "Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation", Molecular Physics '''99''' pp. 619-625 (2001)]</ref> | ||
<ref>[http://dx.doi.org/10.1080/00268970802471137 Dezso Boda and Douglas Henderson "The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture", Molecular Physics '''106''' pp. 2367-2370 (2008)]</ref> | <ref>[http://dx.doi.org/10.1080/00268970802471137 Dezso Boda and Douglas Henderson "The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture", Molecular Physics '''106''' pp. 2367-2370 (2008)]</ref> | ||
<ref>[http://dx.doi.org/10.1063/1.1610435 W. Song, P. J. Rossky, and M. Maroncelli "Modeling alkane+perfluoroalkane interactions using all-atom potentials: Failure of the usual combining rules", Journal of Chemical Physics '''119''' pp. 9145- (2003)]</ref>. | <ref>[http://dx.doi.org/10.1063/1.1610435 W. Song, P. J. Rossky, and M. Maroncelli "Modeling alkane+perfluoroalkane interactions using all-atom potentials: Failure of the usual combining rules", Journal of Chemical Physics '''119''' pp. 9145- (2003)]</ref> | ||
<ref>[http://dx.doi.org/10.1063/1.4867498 Caroline Desgranges and Jerome Delhommelle "Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. III. Impact of combining rules on mixtures properties", Journal of Chemical Physics '''140''' 104109 (2014)]</ref>. | |||
==Mason-Rice rules== | |||
The Mason-Rice rules for the [[Exp-6 potential]] <ref>[http://dx.doi.org/10.1063/1.1740100 Edward A. Mason and William E. Rice "The Intermolecular Potentials of Helium and Hydrogen", Journal of Chemical Physics '''22''' pp. 522- (1954)]</ref>. | |||
==Srivastava and Srivastava rules== | |||
The Srivastava and Srivastava rules for the [[Exp-6 potential]] <ref>[http://dx.doi.org/10.1063/1.1742786 B. N. Srivastava and K. P. Srivastava "Combination Rules for Potential Parameters of Unlike Molecules on Exp‐Six Model", Journal of Chemical Physics '''24''' pp. 1275-1276 (1956)]</ref>. | |||
==Sikora rules== | |||
The Sikora rules for the [[Lennard-Jones model]] <ref>[http://dx.doi.org/10.1088/0022-3700/3/11/008 P. T. Sikora "Combining rules for spherically symmetric intermolecular potentials", Journal of Physics B: Atomic and Molecular Physics '''3''' pp. 1475- (1970)]</ref>. | |||
==Tang and Toennies== | ==Tang and Toennies== | ||
<ref>[http://dx.doi.org/10.1007/BF01384663 K. T. Tang and J. Peter Toennies "New combining rules for well parameters and shapes of the van der Waals potential of mixed rare gas systems", Zeitschrift für Physik D Atoms, Molecules and Clusters '''1''' pp. 91-101 (1986)]</ref> | <ref>[http://dx.doi.org/10.1007/BF01384663 K. T. Tang and J. Peter Toennies "New combining rules for well parameters and shapes of the van der Waals potential of mixed rare gas systems", Zeitschrift für Physik D Atoms, Molecules and Clusters '''1''' pp. 91-101 (1986)]</ref> | ||
==Waldman-Hagler rules== | ==Waldman-Hagler rules== | ||
<ref>[http://dx.doi.org/10.1002/jcc.540140909 M. Waldman and A. T. Hagler "New combining rules for rare-gas Van der-Waals parameters", Journal of Computational Chemistry '''14''' pp. 1077-1084 (1993)]</ref> | The Waldman-Hagler rules <ref>[http://dx.doi.org/10.1002/jcc.540140909 M. Waldman and A. T. Hagler "New combining rules for rare-gas Van der-Waals parameters", Journal of Computational Chemistry '''14''' pp. 1077-1084 (1993)]</ref> are given by: | ||
:<math>r_{ij}^0 = \left( \frac{ (r_i^0)^6 + (r_j^0)^6 }{2} \right)^{1/6}</math> | |||
and | |||
:<math>\epsilon_{ij} = 2 \sqrt{\epsilon_i \cdot \epsilon_j} \left( \frac{ (r_i^0)^3 \cdot (r_j^0)^3 }{ (r_i^0)^6 + (r_j^0)^6 } \right)</math> | |||
==References== | ==References== | ||
<references/> | <references/> |
Latest revision as of 11:48, 16 January 2015
The combining rules are geometric expressions designed to provide the interaction energy between two dissimilar non-bonded atoms (here labelled and ). Most of the rules are designed to be used with a specific interaction potential in mind. (See also Mixing rules).
Böhm-Ahlrichs[edit]
Diaz Peña-Pando-Renuncio[edit]
Fender-Halsey[edit]
The Fender-Halsey combining rule for the Lennard-Jones model is given by [4]
Gilbert-Smith[edit]
The Gilbert-Smith rules for the Born-Huggins-Meyer potential[5][6][7].
Good-Hope rule[edit]
The Good-Hope rule for Mie–Lennard‐Jones or Buckingham potentials [8] is given by (Eq. 2):
Hudson and McCoubrey[edit]
Hogervorst rules[edit]
The Hogervorst rules for the Exp-6 potential [10]:
and
Kong rules[edit]
The Kong rules for the Lennard-Jones model are given by (Table I in [11]):
Kong-Chakrabarty rules[edit]
The Kong-Chakrabarty rules for the Exp-6 potential [12] are given by (Eqs. 2-4):
and
Lorentz-Berthelot rules[edit]
The Lorentz rule is given by [13]
which is only really valid for the hard sphere model.
The Berthelot rule is given by [14]
These rules are simple and widely used, but are not without their failings [15] [16] [17] [18].
Mason-Rice rules[edit]
The Mason-Rice rules for the Exp-6 potential [19].
Srivastava and Srivastava rules[edit]
The Srivastava and Srivastava rules for the Exp-6 potential [20].
Sikora rules[edit]
The Sikora rules for the Lennard-Jones model [21].
Tang and Toennies[edit]
Waldman-Hagler rules[edit]
The Waldman-Hagler rules [23] are given by:
and
References[edit]
- ↑ Hans‐Joachim Böhm and Reinhart Ahlrichs "A study of short‐range repulsions", Journal of Chemical Physics 77 pp. 2028- (1982)
- ↑ M. Diaz Peña, C. Pando, and J. A. R. Renuncio "Combination rules for intermolecular potential parameters. I. Rules based on approximations for the long-range dispersion energy", Journal of Chemical Physics 76 pp. 325- (1982)
- ↑ M. Diaz Peña, C. Pando, and J. A. R. Renuncio "Combination rules for intermolecular potential parameters. II. Rules based on approximations for the long-range dispersion energy and an atomic distortion model for the repulsive interactions", Journal of Chemical Physics 76 pp. 333- (1982)
- ↑ B. E. F. Fender and G. D. Halsey, Jr. "Second Virial Coefficients of Argon, Krypton, and Argon-Krypton Mixtures at Low Temperatures", Journal of Chemical Physics 36 pp. 1881-1888 (1962)
- ↑ T. L. Gilbert "Soft‐Sphere Model for Closed‐Shell Atoms and Ions", Journal of Chemical Physics 49 pp. 2640- (1968)
- ↑ T. L. Gilbert, O. C. Simpson, and M. A. Williamson "Relation between charge and force parameters of closed‐shell atoms and ions", Journal of Chemical Physics 63 pp. 4061- (1975)
- ↑ Felix T. Smith "Atomic Distortion and the Combining Rule for Repulsive Potentials", Physical Review A 5 pp. 1708-1713 (1972)
- ↑ Robert J. Good and Christopher J. Hope "New Combining Rule for Intermolecular Distances in Intermolecular Potential Functions", Journal of Chemical Physics 53 pp. 540- (1970)
- ↑ G. H. Hudson and J. C. McCoubrey "Intermolecular forces between unlike molecules. A more complete form of the combining rules", Transactions of the Faraday Society 56 pp. 761-766 (1960)
- ↑ W. Hogervorst "Transport and equilibrium properties of simple gases and forces between like and unlike atoms", Physica 51 pp. 77-89 (1971)
- ↑ Chang Lyoul Kong "Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12–6) potential and the Morse potential", Journal of Chemical Physics 59 pp. 2464-2467 (1973)
- ↑ Chang Lyoul Kong , Manoj R. Chakrabarty "Combining rules for intermolecular potential parameters. III. Application to the exp 6 potential", Journal of Physical Chemistry 77 pp. 2668-2670 (1973)
- ↑ H. A. Lorentz "Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase", Annalen der Physik 12 pp. 127-136 (1881)
- ↑ Daniel Berthelot "Sur le mélange des gaz", Comptes rendus hebdomadaires des séances de l’Académie des Sciences, 126 pp. 1703-1855 (1898)
- ↑ Jérôme Delhommelle; Philippe Millié "Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation", Molecular Physics 99 pp. 619-625 (2001)
- ↑ Dezso Boda and Douglas Henderson "The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture", Molecular Physics 106 pp. 2367-2370 (2008)
- ↑ W. Song, P. J. Rossky, and M. Maroncelli "Modeling alkane+perfluoroalkane interactions using all-atom potentials: Failure of the usual combining rules", Journal of Chemical Physics 119 pp. 9145- (2003)
- ↑ Caroline Desgranges and Jerome Delhommelle "Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. III. Impact of combining rules on mixtures properties", Journal of Chemical Physics 140 104109 (2014)
- ↑ Edward A. Mason and William E. Rice "The Intermolecular Potentials of Helium and Hydrogen", Journal of Chemical Physics 22 pp. 522- (1954)
- ↑ B. N. Srivastava and K. P. Srivastava "Combination Rules for Potential Parameters of Unlike Molecules on Exp‐Six Model", Journal of Chemical Physics 24 pp. 1275-1276 (1956)
- ↑ P. T. Sikora "Combining rules for spherically symmetric intermolecular potentials", Journal of Physics B: Atomic and Molecular Physics 3 pp. 1475- (1970)
- ↑ K. T. Tang and J. Peter Toennies "New combining rules for well parameters and shapes of the van der Waals potential of mixed rare gas systems", Zeitschrift für Physik D Atoms, Molecules and Clusters 1 pp. 91-101 (1986)
- ↑ M. Waldman and A. T. Hagler "New combining rules for rare-gas Van der-Waals parameters", Journal of Computational Chemistry 14 pp. 1077-1084 (1993)
Related reading