|  |     | 
| (2 intermediate revisions by the same user not shown) | 
| Line 1: | Line 1: | 
|  | The '''stress''' is given by
 |  | #REDIRECT[[Pressure#Stress]] | 
|  |   |  | 
|  | :<math>{\mathbf F} = \sigma_{ij} {\mathbf A}</math>
 |  | 
|  |   |  | 
|  | where <math>{\mathbf F}</math> is the force, 
 |  | 
|  | <math>{\mathbf A}</math> is the area, and <math>\sigma_{ij}</math> is the stress tensor, given by
 |  | 
|  |   |  | 
|  | :<math>\sigma_{ij} \equiv \left[{\begin{matrix}
 |  | 
|  |    \sigma _x & \tau _{xy} & \tau _{xz} \\
 |  | 
|  |    \tau _{yx} & \sigma _y & \tau _{yz} \\
 |  | 
|  |    \tau _{zx} & \tau _{zy} & \sigma _z \\
 |  | 
|  |   \end{matrix}}\right]</math>
 |  | 
|  |   |  | 
|  | where where <math>\ \sigma_{x}</math>, <math>\ \sigma_{y}</math>, and <math>\ \sigma_{z}</math> are normal stresses, and  <math>\ \tau_{xy}</math>, <math>\ \tau_{xz}</math>, <math>\ \tau_{yx}</math>, <math>\ \tau_{yz}</math>, <math>\ \tau_{zx}</math>, and <math>\ \tau_{zy}</math> are shear stresess.
 |  | 
|  | ==References==
 |  | 
|  | <references/>
 |  | 
|  | '''Related reading'''
 |  | 
|  | *[http://dx.doi.org/10.1063/1.3245303 Aidan P. Thompson, Steven J. Plimpton, and William Mattson "General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions", Journal of Chemical Physics '''131''' 154107 (2009)]
 |  | 
|  | [[category: classical mechanics]]
 |  |