Verlet leap-frog algorithm: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (→References: Added title of a publication) |
Carl McBride (talk | contribs) m (Undo revision 10860 by DannySaylor (talk) Spam) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
The '''Verlet leap-frog algorithm''' is a variant of the original Verlet scheme <ref>[http://dx.doi.org/10.1103/PhysRev.159.98 Loup Verlet "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules", Physical Review '''159''' pp. 98-103 (1967)]</ref> for use in [[molecular dynamics]] simulations. The algorithm is given by: | The '''Verlet leap-frog algorithm''' <ref>R. W. Hockney "The potential calculation and some applications", Methods in Computational Physics vol. '''9''' pp. 135-211 Academic Press, New York (1970)</ref> is a variant of the original Verlet scheme <ref>[http://dx.doi.org/10.1103/PhysRev.159.98 Loup Verlet "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules", Physical Review '''159''' pp. 98-103 (1967)]</ref> for use in [[molecular dynamics]] simulations. The algorithm is given by: | ||
:<math>r(t + \delta t) = r (t) + \delta t v\left(t+ \frac{1}{2} \delta t\right)</math> | :<math>r(t + \delta t) = r (t) + \delta t v\left(t+ \frac{1}{2} \delta t\right)</math> | ||
Line 11: | Line 11: | ||
<references/> | <references/> | ||
'''Related reading''' | '''Related reading''' | ||
*[http://dx.doi.org/10.1063/1.2779878 Michel A. Cuendet and Wilfred F. van Gunsteren "On the calculation of velocity-dependent properties in molecular dynamics simulations using the leapfrog integration algorithm", Journal of Chemical Physics '''127''' 184102 (2007)] | *[http://dx.doi.org/10.1063/1.2779878 Michel A. Cuendet and Wilfred F. van Gunsteren "On the calculation of velocity-dependent properties in molecular dynamics simulations using the leapfrog integration algorithm", Journal of Chemical Physics '''127''' 184102 (2007)] | ||
[[category: Molecular dynamics]] | [[category: Molecular dynamics]] |
Latest revision as of 12:54, 30 November 2010
The Verlet leap-frog algorithm [1] is a variant of the original Verlet scheme [2] for use in molecular dynamics simulations. The algorithm is given by:
where r is the position, v is the velocity, a is the acceleration and t is the time. is known as the time step.
See also[edit]
References[edit]
- ↑ R. W. Hockney "The potential calculation and some applications", Methods in Computational Physics vol. 9 pp. 135-211 Academic Press, New York (1970)
- ↑ Loup Verlet "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules", Physical Review 159 pp. 98-103 (1967)
Related reading