Editing Gibbs ensemble

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 2: Line 2:
(Ref. 1 Eq. 2.2)
(Ref. 1 Eq. 2.2)


:<math>\mathcal{G}_{(N)} ({\mathbf X}_{(N)},t)= \frac{\Gamma_{(N)}^{(0)}}{\mathcal{N}} \frac{{\rm d}\mathcal{N}}{{\rm d}\Gamma_{(N)}}</math>
:<math>\mathcal{G}_{(N)} (X_{(N)},t)= \frac{\Gamma_{(N)}^{(0)}}{\mathcal{N}} \frac{{\rm d}\mathcal{N}}{{\rm d}\Gamma_{(N)}}</math>


where <math>\Gamma_{(N)}^{(0)}</math> is a normalized constant with the dimensions
where <math>\Gamma_{(N)}^{(0)}</math> is a normalized constant with the dimensions
of the [[phase space]] <math>\left. \Gamma_{(N)} \right.</math>.
of the [[phase space]] <math>\left. \Gamma_{(N)} \right.</math>.


:<math>{\mathbf X}_{(N)} = \{ {\mathbf r}_1 , ...,  {\mathbf r}_N ; {\mathbf p}_1 , ...,  {\mathbf p}_N \}</math>
:<math>\left. X_{(N)} \right.= \{ r_1 , ...,  r_N ; p_1 , ...,  p_N \}</math>


Normalization condition (Ref. 1 Eq. 2.3):
Normalization condition (Ref. 1 Eq. 2.3):
Line 24: Line 24:
Macroscopic mean values are given by (Ref. 1 Eq. 2.5)
Macroscopic mean values are given by (Ref. 1 Eq. 2.5)


:<math>\langle \psi ({\mathbf r},t)\rangle= \frac{1}{\Gamma_{(N)}^{(0)}}  
:<math>\langle \psi (r,t)\rangle= \frac{1}{\Gamma_{(N)}^{(0)}}  
  \int_{\Gamma_{(N)}}  \psi  ({\mathbf X}_{(N)}) \mathcal{G}_{(N)} ({\mathbf X}_{(N)},t) {\rm d}\Gamma_{(N)}
  \int_{\Gamma_{(N)}}  \psi  (X_{(N)}) \mathcal{G}_{(N)} (X_{(N)},t) {\rm d}\Gamma_{(N)}</math>
</math>


===[[Ergodic hypothesis |Ergodic theory]]===
===[[Ergodic hypothesis |Ergodic theory]]===
Line 40: Line 39:
where <math>\Omega</math> is the ''N''-particle [[thermal potential]] (Ref. 1 Eq. 2.12)
where <math>\Omega</math> is the ''N''-particle [[thermal potential]] (Ref. 1 Eq. 2.12)


:<math>\Omega_{(N)} ({\mathbf X}_{(N)},t)= \ln \mathcal{G}_{(N)} ({\mathbf X}_{(N)},t)</math>
:<math>\Omega_{(N)} (X_{(N)},t)= \ln \mathcal{G}_{(N)} (X_{(N)},t)</math>


==References==
==References==
# G. A. Martynov  "Fundamental Theory of Liquids. Method of Distribution Functions", Adam Hilger (out of print)
# G. A. Martynov  "Fundamental Theory of Liquids. Method of Distribution Functions", Adam Hilger (out of print)
[[category: statistical mechanics]]
[[category: statistical mechanics]]
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)