Editing Computational implementation of integral equations
Jump to navigation
Jump to search
The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.
Latest revision | Your text | ||
Line 181: | Line 181: | ||
===Conversion back from Fourier space to Real space=== | ===Conversion back from Fourier space to Real space=== | ||
<math>\tilde{\gamma}_{mns}^{\mu \nu} (k) \rightarrow \gamma_{mns}^{\mu \nu} (r)</math> | |||
(basically the inverse of step 2). | (basically the inverse of step 2). | ||
====Axial reference frame to spatial reference frame==== | ====Axial reference frame to spatial reference frame==== | ||
:<math>\tilde{\gamma}_{mns}^{\mu \nu} (k) \rightarrow \tilde{\gamma}^{mnl}_{\mu \nu} (k)</math> | :<math>\tilde{\gamma}_{mns}^{\mu \nu} (k) \rightarrow \tilde{\gamma}^{mnl}_{\mu \nu} (k)</math> | ||
====Inverse Fourier-Bessel transform==== | ====Inverse Fourier-Bessel transform==== | ||
:<math>\tilde{\gamma}^{mnl}_{\mu \nu} (k) \rightarrow \gamma^{mnl}_{\mu \nu} (r)</math> | :<math>\tilde{\gamma}^{mnl}_{\mu \nu} (k) \rightarrow \gamma^{mnl}_{\mu \nu} (r)</math> `Step-up' operations are given by Eq. 53 of Ref. 3. The inverse Hankel transform is | ||
:<math>\gamma(r;l_1 l_2 l n_1 n_2)= \frac{1}{2 \pi^2 i^l} \int_0^\infty \tilde{\gamma}(k;l_1 l_2 l n_1 n_2) J_l (kr) ~k^2 {\rm d}k</math> | :<math>\gamma(r;l_1 l_2 l n_1 n_2)= \frac{1}{2 \pi^2 i^l} \int_0^\infty \tilde{\gamma}(k;l_1 l_2 l n_1 n_2) J_l (kr) ~k^2 {\rm d}k</math> | ||
====Change from spatial reference frame back to axial reference frame==== | ====Change from spatial reference frame back to axial reference frame==== | ||
:<math>\gamma^{mnl}_{\mu \nu} (r) \rightarrow \gamma_{mns}^{\mu \nu} (r)</math>. | :<math>\gamma^{mnl}_{\mu \nu} (r) \rightarrow \gamma_{mns}^{\mu \nu} (r)</math>. | ||
==Ng acceleration== | ==Ng acceleration== | ||
*[http://dx.doi.org/10.1063/1.1682399 Kin-Chue Ng "Hypernetted chain solutions for the classical one-component plasma up to Gamma=7000", Journal of Chemical Physics '''61''' pp. 2680-2689 (1974)] | *[http://dx.doi.org/10.1063/1.1682399 Kin-Chue Ng "Hypernetted chain solutions for the classical one-component plasma up to Gamma=7000", Journal of Chemical Physics '''61''' pp. 2680-2689 (1974)] |