Martyna-Tuckerman-Tobias-Klein barostat
(Redirected from Martyna-Tuckerman-Klein barostat)
Martyna-Tuckerman-Tobias-Klein barostat [1] [2] has the following equations of motion (Eq.13):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{\overline{\mathbf {h}}} = \frac{\overline{\mathbf {p}}_g {\overline{\mathbf {h}}} }{W_g}}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{\overline{\mathbf {p}}}_g = V \left({\overline{\mathbf {p}}}_{\mathrm {int}} - {\overline{\mathbf {I}}} P_{\mathrm {ext}} \right) + \left[ \frac{1}{N_f} \sum_{i=1}^N \frac{{\mathbf {p}}_i^2 }{m_i} \right] {\overline{\mathbf {I}}} - \frac{p_{\xi}}{Q}{\overline{\mathbf {p}}}_g}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot\xi= \frac{p_{\xi}}{Q}}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot p_{\xi} = \sum_{i=1}^N \frac{{\mathbf {p}}_i^2 }{m_i} + \frac{1}{W_g} \mathrm{Tr}\left[ {\overline{\mathbf {p}}}_g^t {\overline{\mathbf {p}}}_g \right] - (N_f + d^2) kT}
References[edit]
- ↑ Glenn J. Martyna, Douglas J. Tobias, and Michael L. Klein "Constant pressure molecular dynamics algorithms", Journal of Chemical Physics 101 pp. 4177-4189 (1994)
- ↑ G. J. Martyna, M. E. Tuckerman, D. J. Tobias and M. L. Klein "Explicit reversible integrators for extended systems dynamics", Molecular Physics 87 pp. 1117-1157 (1996)